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Preface 
 

Having heard of a group of 5 Dutch teenagers that solved a mathematical problem with their profile 
research, I was tempted to try and achieve a similar feat. Being fond of Mathematics, I used Google 
to search for an unsolved mathematical problem that I could analyze, and possibly solve. I stumbled 
upon a problem concerning computer science, of which I am also incredibly fond. It was called the P 
versus NP problem, and the Clay Institute of Mathematics would grant a sum of $1,000,000 to the 
first person to give viable proof to solve the problem. I read on, and was intrigued by the problem 
(and the enormous sum of money), so I decided to submit it as the subject of my profile research. 
 
I have tried to comprehend the P versus NP problem to the best of my abilities, and I aimed to 
explain it as clearly as possible, so that people with an average understanding of math can 
understand the essence of the problem. This proved a pretty difficult task, since the problem is based 
upon levels of mathematics and certain very complex elements that I haven’t seen before. I have had 
to educate myself on the matter, which took a substantial amount of my time. You try not to lose 
track of the problem along the way, but it is inevitable when you go into some bits in-depth. 
Nonetheless I believe that this profile research should be sufficiently comprehensible for the 
averagely-educated person, and coherent enough to be scientifically representable and, more 
importantly, correct. 
 
 
I also wish to thank a few people: 
 

 Mr. Nijboer, for supervising my profile research as I went along. 
 My previous math teachers, Mr. Naughton & Mr. Guezen, for increasing my knowledge on 

the fields of mathematics enough to solve this problem. 
 My good friend Joey van Hummel, for stimulating my interest in science and scientific 

research. 
 Gerardo Adesso, Thomas Woolley and others, for taking their time to answer my survey 

about the P versus NP Problem. 
 Stephen Cook, Leonid Levin, Brian Hayes, Vinay Deolalikar, Koji Kobayashi, William Gasarch, 

Walter Savitch, Neil Immerman and everyone who has tried to solve P versus NP for their 
research on the topic. 
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Introduction to P versus NP 
 

The P versus NP Problem is a fundamental, unsolved problem in computer science. Many 
mathematicians believe it to be THE most fundamental problem in computer science. It is a 
Millennium Prize Problem, and the Clay Institute of Mathematics has promised $1.000.000 to the 
first person to provide solid proof of an answer. The problem was first introduced by Stephen Cook in 
his seminal paper “The complexity of theorem proving procedures”, which was published in 1971. 
Computer Scientists and mathematicians alike have tried to solve to problem since, but 
unfortunately, to no avail. So what is the P versus NP Problem? 
 
Informally, the problem asks whether problems that can be easily verified by a computer (NP) can 
also be quickly solved by a computer (P). P and NP are the names of so-called complexity classes. 
Complexity classes are used to index the difficulty of a certain problem. 
 

P 
 
Problems in complexity class P (P standing for Polynomial) can be assessed and solved quickly by a 
computer, using a relatively simple algorithm. An example of a problem in complexity class P would 
be a mathematical sum. i.e.: what is 5+7? Or what is the square root of 9? The answers are 12 and 3 
respectively, and can easily be solved by any household calculator. Problems in complexity class P are 
“easy” and can be solved in a “short” timespan. 
 
The formal definition for a problem in complexity class P is: “A problem that can be solved by using a 
deterministic algorithm by a deterministic Turing machine in polynomial time.” 
That’s a lot of difficult terminology to be understood at once, so let’s tackle everything one by one: 
 
A Deterministic Algorithm is a predictable, step-by-step calculation. A problem solved by a 
deterministic algorithm is solved step-by-step, using only the presented input, in a deterministic 
timespan. Deterministic, as the name suggests, means that something can be determined. In the case 
of a time span, a deterministic time span means a relatively short time span, a time span that can be 
measured by for example a stopwatch. Simply put: a computation that isn’t “slow”. The best 
definition of a slow computation is probably Brian Hayes’ ‘Coffee-Break Criterion’: “A computation is 
slow if it’s not finished when you come back from a coffee break.”[HAYB08] 
 
A Turing Machine is a hypothetical machine that preforms computations or manipulations according 
to a set of rules, used to describe the workings of an algorithm. A Turing machine is deterministic if it 
can only compute using deterministic algorithms, as described above. The time it takes for a 
deterministic Turing machine to complete a calculation is called PTIME. An example of a 
deterministic Turing machine would be a computer. In some ways, the human brain is also a 
deterministic Turing machine. 
 
Polynomial Time is the formal term for a “short” timespan. Polynomial time is deterministic, and it 
exists. Any timespan that can be measured or indicated is Polynomial.  
 
So to recap, a problem falls under complexity class P if it can be solved easily (deterministic 
algorithm) by a computer (deterministic Turing machine) in a short timespan (polynomial time). 
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NP 
 
Problems in complexity class NP (NP standing for Non-Polynomial) cannot be assessed and solved 
quickly by a computer. In a way, NP is the opposite of P, but there’s some fundamental differences. 
NP problems are “hard”. A deterministic Turning machine would take an incredibly long time to 
compute an NP Problem, and the time taken might even be unimaginable, it might literally take 
forever. That’s why we have a different method of computing NP Problems: The Non-Deterministic 
Turing Machine. As the name suggests, the non-deterministic Turing machine is the opposite of a 
deterministic Turing machine. It uses nondeterministic algorithms to solve problems in polynomial 
time. 
 
Nondeterministic Algorithms are the opposite of deterministic algorithms. They are unpredictable, 
and may use data that was not provided. Nondeterministic Algorithms may run several calculations 
at the same time, and assess an incredible amount of data at once. In addition, there is a 
theoretically infinite number of ways to run this algorithm, and at least one of them is able to run in 
polynomial time. 
 
A Nondeterministic Turing Machine is a Turing machine that is able to compute Nondeterministic 
Algorithms, and can solve NP Problems in Polynomial time, whereas a deterministic Turing machine 
could only solve an NP problem in non-Polynomial time. 
 
Non-Polynomial Time is a “long” timespan. It is a time span that would be illogical to measure for an 
experiment or calculation. It might take several days, years, lightyears, or might even refer to forever. 
Non-Polynomial time, either real or fictional, is incredibly, incredibly long when put alongside 
polynomial time, to such an extent that it would be impractical to calculate whatever it is you are 
trying to calculate 
 
So you might say that NP is the exact opposite of P, however, there’s a good reason we do not. This is 
because there is one important characteristic of NP that I didn’t mention yet. The answer to every 
problem in complexity class NP can be verified by a deterministic Turing machine in polynomial time. 
 
Imagine two identical 1000 piece jigsaw puzzles, being solved by two different computers. The first 
computer is deterministic, it takes a puzzle piece and analyzes it, checks if it fits with any other piece, 
and puts it down in the correct position. The machine takes about 2 hours to complete the puzzle. 
The second machine is nondeterministic. It looks at every single puzzle piece at the exact same time, 
and places all the pieces of the puzzle in the correct position at the same time. The machine takes 
about 5 seconds to solve the puzzle. However, the first computer, being presented the correct 
solution, is perfectly able to comprehend the solution, and can verify it. Every puzzle piece fits, and 
the image displayed is comprehensible, so the first computer can see it has been solved correctly at a 
glance. 
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Another example of an NP problem is the Subset Sum problem. An example of a subset sum problem 
is: “does a subset of the numbers {-6, 1, 5, 17, 26, 55} add up to 32?” A deterministic Turing machine 
would have to try every possible subset, and check if it adds up to 32. The number of possible 

subsets to check is quite large. There is a total number of 63 subsets that can be created. 

  The time it takes for a deterministic Turing machine would be nt where 

n is the number of possible combinations and t is the amount of time needed to check one 
combination. If the computer would take 1 second to check one combination, it would take 321 = 32 
seconds to complete the question. A nondeterministic Turing machine could solve the question in 
the same time that the deterministic Turing machine checks one combination; 1 second. The correct 
answer is yes, 1, 5 & 17 add up to 32. A deterministic Turing machine could easily solve this problem, 
because it can calculate 1 + 5 + 17 in the same amount of time that it would take to check one 
combination; 1 second. 
 

P = NP? 
 
The P versus NP problem is all about whether P is equal to NP. If P is equal to NP that would mean 
that a problem that can be verified quickly by a deterministic Turning machine, can also be solved 
quickly by a deterministic Turing machine. 
 
So what is the significance of the problem? The answer to the problem could greatly affect how 
mathematicians and computer scientists think about computational technology. A lot of fundamental 
computational rules and workings are based on the assumption that P is not equal to NP. If P were to 
be proven equal to NP, polynomial hierarchy would be proven infinite. 
 
Nobody knows exactly how to solve the P versus NP problem. There are several suggested methods, 
and problems spawning from the P versus NP problems are most likely solved first. Over the past few 
years, a lot of research has been done, and several of those P versus NP-related sub questions have 
been solved. Since these sub questions form the basis of the P versus NP problem, let’s have a look at 
those first, before moving on to solving the actual P versus NP problem. 
 

P = NP  ∨ P ≠ NP ? 
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Beyond P and NP 
 

Since the P versus NP Problem’s introduction in 1971, complexity theories have changed and have 
spawned new questions and categories. Problems aren’t simply P or NP anymore; they have 
subcategories with each their own classification, name and specifics. So let’s have a look at those 
first. 
 

NPH & NPC 
 
An example of such a subcategory is the group of NP-Hard problems, often abbreviated as NPH. All 
NP-Hard problems are Decision Problems. Decision problems are problems that have a simple yes or 
no decision as an answer. NP-Hard problems, despite their name, do not necessarily belong to the 
group op NP problems (and certainly not in P), meaning that some NP-Hard problems aren’t known 
to be able to be solved in polynomial time. It is assumed that for these NP-Hard problems, which are 
not in NP, not a single path of the nondeterministic algorithm used to solve it is in polynomial time. 
Additionally, a problem is only NP-Hard if and only if every problem in NP is polynomial-time 
reducible to the decision problem.  
 
Reduction is changing one problem into another known problem. When we encounter a new 
problem, and it is similar to a problem that has already been solved, we can use the answer to the 
already solved problem to solve the new one. In case of a Turing Reduction, two similar, unsolved 
problems are compared, and the new is solved by assuming an answer for the first problem. 
Polynomial-time Reduction, also known as a Cook Reduction, is a Turing reduction that can be 
operated by a deterministic Turing machine. In other words: a deterministic Turing machine is able to 
compare the new problem to an already known problem, and solve it by assuming an answer for the 
already known problem, and transforming it into instances of the new problem. 
 
NP-Complete problems, often abbreviated as NPC, are problems that fall under both NP and NP-
Hard. They are NP-Hard decision problems that can be solved using a nondeterministic algorithm in 
polynomial time. 
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The classifications of NPH and NPC are based on the assumption that P ≠ NP. As you can see in the 
image above, NPC is a subset of both the NP and the NPH groups. If P is equal to NP, then classes P, 
NP and NPC are the same, since all problems in NPC must be part of NP. NPH would be a class 
existing partly in the combined P/NP/NPC class, and partly of decision problems outside of the 
combined P/NP/NPC class. 

 

PSPACE & NPSPACE 
 
Problems in complexity class P also have their own subcategories, and one of them is called PSPACE. 
In the introduction I called the amount of time taken by a deterministic Turing machine to solve a 
deterministic algorithm PTIME. Likewise, PSPACE is a subset of problems in P where the amount of 
space required by a deterministic Turing machine to solve a deterministic algorithm is polynomial. 
Just like polynomial time, polynomial space is relatively small, and can be measured (i.e. by a tape 
measure).  
 
Walter Savitch proved that PSPACE = NPSPACE in 1970. He proved that if a nondeterministic Turing 
machine can solve a problem using a function of a certain number of space, a deterministic Turing 
machine can solve the same problem in a square of that number of space.[SAVW70] 

 
The hardest problems are known was PSPACE-Complete. These are problems which are believed to 
be the hardest in PSPACE, but do not belong to NP. 
 

Other Classes 
There is quite a large number of these complexity classes. They include L, NL PH, FL, FP, NFP, 
EXPTIME and EXPSPACE. They are all fascinating in their own way, but if I were to talk about them all 
this research would be enormous. I have chosen the complexity classes that are most closely related 
to the P versus NP problem, or have a similar unsolved problem with some significance towards the P 
versus NP Problem.  
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Opinions on P versus NP 
 

Poll 
 
William I. Gasarch of the University of Maryland conducted a poll about complexity theory in 2002, in 
which he questioned 100 mathematicians about the P versus NP problem.[GASW02] He asked when they 
thought it would be solved, what the answer would be, how it would be solved and whether they 
believed the answer to the problem would be easy to understand. 
 
Inspired by Gasarch’s poll, I set up a small survey of my own. I’ve contacted a few mathematicians 
and asked them about P versus NP. I asked them: 

- Whether they knew what P versus NP was 
- Whether they believed P is equal to NP 
- When they believed the problem would be solved 
- How the problem would be solved 
- Whether the answer would be hard to follow 
- What they believed is the significance of the problem 

 
The people that I have contacted and that responded are: 

- Gerardo Adesso MSc, Researcher at the School of Mathematical Sciences of the University of 
Nottingham 

- Thomas E. Woolley MMATH, AHEA, DPhil Mathematician at the Centre of Mathematical 
Biology of the University of Oxford 

- A professor in Computational and Analytical Mathematics who wishes to remain anonymous 
 
That’s not a lot of people to back up any claims, but the opinions presented were verily in line with 
the results of Gasarch’s poll in 2002. All three interviewees believed that P and NP are not equal. 
They agreed that the P versus NP problem is significant, perhaps THE most significant problem in 
computer science, backed up by the fact that it is a Millennium Prize Problem. 
 
Furthermore, Scott Aaronson, Associate Professor of Electrical Engineering and Computer Science 
provided his opinion regarding the poll held by Gasarch on his personal blog on June 25th 2011.[AARS11] 
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Solving P Problems 
 
Problems belonging to complexity class P are informally the easiest, so it would make sense to start 
with those. I have highlighted a few problems that are known to belong into P and I have added an 
in-depth explanation of how to solve it, why it is in the complexity class it is and proof of the solution 
of the problem, both theoretical and mathematical. For solving these P problems, and the NP 
problems in the next chapter, we will be using two deterministic Turing machines: 

- The Human Brain 
- A Computer 

Arithmetic 
 
Simple mathematical sums, such as additions, subtractions, divisions or multiplications, are the most 
basic problems in complexity class P. They are easy to resolve and in most cases only require a single 
step. They can be solved using a deterministic algorithm by a deterministic Turing machine in 
polynomial time. Small additions and subtractions such as 16-1 take about a second to be processed 
into a human brain. Slightly larger ones such as 66+15 might take about 5 seconds. More complicated 
divisions and multiplications take a significantly larger amount of time to process with a human brain. 
A randomly generated sum, 9086 x 192, took me 173.62 seconds to solve, with the aid of a piece of 
paper. When such sums are inserted into a computer or a calculator, it is able to produce the correct 
answer in a fraction of a second. 
 
Arithmetic (including, but not limited to: additions, subtractions, divisions and multiplications) can be 
solved using a deterministic algorithm by a deterministic Turing machine in polynomial time, and 
therefore, it is in complexity class P. 
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Solving NP Problems 
 

Problems belonging to complexity class NP are significantly more difficult and more interesting than 
the problems belonging to complexity class P. 
 

Sudoku 
 
Sudoku’s are Japanese puzzles which have gained massive popularity in the past years. A Sudoku is a 
grid of 9x9 squares, which is divided into 9 3x3 grids. The point of the game is that with 17 clues or 
more, you have to fill in the 9x9 grid in such a way that: 

 In every row, the numbers 1-9 appear only once 

 In every column, the numbers 1-9 appear only once 

 In every 3x3 grid, the numbers 1-9 appear only once 
 
While meant for recreation, Sudoku puzzles have proven to be extremely difficult. They may take the 
average adult anything between half an hour and a day to solve one, or whatever timespan is needed 
to force one to quit trying to solve the puzzle as a result of rage resulting from the inability to solve 
one. 
 
However, Sudoku’s can be solved by humans. Recently, some computer programs have been written 
that can solve Sudoku’s, so computers are able to solve Sudoku’s in polynomial time aswell. 
However, it can only be done using a nondeterministic algorithm; the set of rules the Turing machine 
has to follow is dependent on the data it generates along the way. However, a deterministic Turing 
machine can easily and quickly check that the solved Sudoku is correct, because the numbers 1-9 
only appear once in every 3x3 grid, row and column. Thusly, Sudoku’s belong to class NP. 
 

Minesweeper 
 
Minesweeper is a computer game where the player must click random squares, which reveal a blank 
space, a number, or a mine. The player must then figure out where the mines are located, and click 
every square on the grid apart from the mines. The game is pretty popular among masses, and 
perhaps the most well-known iteration of the minesweeper game is the one created for OS/2 by Curt 
Johnson in 1990, which was included with Windows XP. 
 
There is no real predefined algorithm to win minesweeper. You make it up as you go along. Since you 
haven’t a clue where the mines will be placed before starting the game, a continuous flow of data is 
required to be inputted and generated in order to solve the computer. Because there is not one 
simple algorithm for minesweeper, it can only be solved in polynomial time by a nondeterministic 
Turing machine using a nondeterministic algorithm. However, a deterministic Turing machine can 
very easily see that the game of minesweeper has been successfully won, for all clicked blocks do not 
contain a mine, and all the remaining unclicked blocks contain mines. Because of this, Minesweeper 
is an NP-Complete problem. 
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Travelling Salesman 
 
The Travelling Salesman problem, also known as the travelling businessman problem, is probably the 
sole embodiment of the NP-Complete set of decision problems. As such, it is usually the target for 
people trying to solve the P versus NP problem. Given a list of cities to visit, and their relative 
distances, the objective is to find the shortest possible route through all the cities, without visiting 
any city twice. 
 

 
Pictured above is an example of a travelling salesman problem in Germany. 13 cities are to be visited. 
To calculate the shortest possible route, first, the outline has been drawn, connecting every city with 
each other (1). Next, a so-called Hamiltonian cycle was drawn. (2) In a Hamiltonian cycle, every dot in 
a planar graph is connected with each other. Next, the shortest possible route was calculated by 
selecting all the shortest possible connections in between cities. (3) Finally, the other routes are 
removed, so that only the shortest possible route is left. (4) 
 
While seemingly easy, every single route in the complete Hamiltonian cycle has to be check to figure 
out which are the shortest, and in what cases the shortest distances can be utilized. The total 
number of possible routes is enormous, and it could take a human and even a computer an incredibly 
long time to compute the shortest possible route. The constant flow of selected routes has to be 
added to the data accumulated for the algorithm used, and thusly, it is a nondeterministic algorithm. 
 
However, given the shortest possible route, a deterministic Turing machine can very easily verify that 
there is no other, shorter route for travelling through every city. Therefore, it has every characteristic 
of an NP-Complete problem. Therefore, it is NP-Complete. 
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Solving P versus NP 
 

The question on the minds of a lot of mathematicians, physicists, engineers and computer scientists 
remains: is P equal to NP? Many have attempted to write comprehensible and correct proof of either 
outcome, and many have failed. The problem has piqued the interest of many an amateur 
mathematician (such as myself), and as a result, a lot of faulty, incomprehensible, incoherent or 
simply gibberish proof papers have been written. The Technical University of Eindhoven has made it 
their hobby to collect papers proving or disproving that P is equal to NP. There is a list totaling 85 
papers on the subject. 41 conclude P to be equal to NP, 37 conclude P and NP to be unequal, and the 
remaining 5 suggest that the P versus NP problem cannot be proved without having a contradiction 
at some point. 
 

a. Deduction 
b. Algebra 
c. Combinatorics 
d. Other Techniques 
e. New Technologies 

 

Deduction 
Deduction is a logical way of approaching a problem. The P versus NP problem has been approached 
with deduction in attempts to solve it over the past few years. Ted Swart of the University of Guelph 
wrote a few papers concerning the P versus NP Problem in 1986. He believed that P is equal to NP, 
since the Hamiltonian cycle, an NP-Hard problem, is solvable in polynomial time. With this 
knowledge he deduced that P must be equal to NP.[SWAT86] Seenil Gram also used deduction to solve P 
versus NP, but his conclusion was somewhat different. In his paper “Redundancy, Obscurity, Self-
Containment & Independence” he first proves the so-called “Indistinguishability Lemma” and then 
proceeds to deduce that EXP must be in NP, concluding that P and NP are unequal.[GRAS01] Another 
person to rely on deduction for his evidence is Nicholas Argall. He explained in a short piece that P 
and NP cannot be defined consistently and completely, as supported by Goedel’s Theorem. Argall 
concluded that since the question cannot be formulated successfully, it cannot be answered 
successfully.[ARGN03] In 2008, Rafee Ebrahim Kamouna proved that SAT is not NP-Complete. From this 
he deduces that there are no NP-Complete problems, concluding P=NP.[KAMR08]  
 

Algebra 
Algebra has also been used to try and solve the P versus NP Problem. The best example of this would 
be the paper ‘Linear Algebra, Lie Algebra and their applications to P versus NP’ written by Ki-Bong 
Nam, S.H. Wang and Yang Gon Kim in 2004. In this paper, algebra is used to point out a fundamental 
counting error which purports to be a counterexample of P=NP, resulting in the conclusion that P is 
not equal to NP.[NAMK04] Richard K. Molnar has reviewed this paper in AMS Mathematical Reviews. 
Molnar explains that the crux of the proof is that the reader is asserted that the complex and hard-
to-follow calculations are not computable in polynomial time, and that they rely on random data that 
wasn’t predefined. Molnar is unimpressed by the paper due to the large number of unclear 
assumptions and faulty conclusions. 
 
 
Matt Groff also used Algebra to try and solve P versus NP. However, his conclusion was that P is 
equal to NP. He established his answer through a time algorithm for the satisfiability problem (a 
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problem in class NP) in which he used linear algebra. As a result he showed that P is equal to 
NP.[GROM11]  
 

Combinatorics 
Combinatorics is a field of mathematics concerning the study of countable discrete structures. 
Informally: it’s the study of things you can count, and their maximal, minimal and optimal values. 
Being a broad field of mathematics, a lot of combinatorialists have used combinatorics to solve the P 
versus NP problem, yielding different results. 
 
In response to Swart’s paper, Mihalis Yannakakis wrote his paper “Expressing combinatorial 
optimization problems by linear programs” in 1988, in which he showed that solving the Travelling 
Salesman problem by using symmetrical lines (like Swart did) does not require exponential space 
(NPSPACE), concluding that P and NP are equal.[YANM88] In 2010, Sergey Gubin once again proved that 
the Travelling Salesman problem can be solved in polynomial space[GUBS10], but his proof was later 
refuted by Romeo Rizzi in 2011. Gubin had previously proved that P is equal to NP in 2006.[GUBS06] 

 
Viktor Ivanov[IVAV05] and Lev Gordeev[GORL05] both proved P and NP to be unequal in their independent 
papers, both published in the summer of 2005, and both using combinatorics. Ivanov rewrote his 
paper in 2010 to reflect new advancements made in the P versus NP matter. Gordeev is still trying to 
perfect his paper to make his evidence foolproof, and thusly, his paper is still a draft version. 
 

Other Techniques 
Other, more experienced mathematicians that have attempted to solve P versus NP have relied on 
more advanced and infinitely more complex techniques of verification that I couldn’t possibly begin 
to explain. Ehrenfeucht-Fraïssé Games, Boolean Circuit Lower Bounds, Finite Model Theory, Paris-
Harrington Theorem; they are all examples of complex mathematical techniques that have yielded a 
wide variety of results concerning the P versus NP Problem. 

 

New Technologies 
A lot of mathematicians believe that the P versus NP problem cannot be solved using the 
mathematical techniques we possess now. As is evident in Gasarch’s poll, 18 people out of the 100 
surveyed suggested that an entirely new technique could have to be invented in order to solve the P 
versus NP Problem. Argall quite elaborately explained that we do not have the techniques to 
properly define the P versus NP problem, let alone to solve it. Therefore, new techniques must be 
constructed before new discoveries regarding the P versus NP problem can be made. However, this 
does not stop amateur and advanced mathematicians to try and resolve the problem anyway. 
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Is P equal to NP? 
 

Whether P is actually equal to NP is still unknown. A lot of proof and evidence has surfaced, but 
nothing conclusive as of yet. However, most evidence found leads many to believe the P is not equal 
to NP. Most mathematicians interviewed by Gasarch in 2002 believed it P is not equal to NP and the 
mathematicians I personally surveyed also believed P and NP are unequal. Most methods in the 
previous chapter have yielded inconclusive proof that P in fact, does equal NP, though the 
acceptability of these proofs is questionable for they are mostly written by amateurs. 
 
I have done tons of research into the matter, both trying to comprehend and solve it, and I have 
been led to believe that P versus NP might never be solved. I am incredibly certain that the current 
techniques will not solve P versus NP. I think that the computers we possess will become much and 
much more advanced, expanding the abilities of the deterministic Turing machine as we know it, up 
to a point where the P versus NP problem will become irrelevant. The way the question is asked is 
vague, and the definitions of its elements are hard to understand. Alleged proofs are either refuted, 
or infinitely complex. The question shouldn’t be “is P equal to NP?” but rather “Will humans be able 
to solve the P versus NP problem before they are wiped out of existence by cyborgs with a superior 
intellect?” and if not, will the cyborgs be able to solve P versus NP?  
 
Humans currently possess an enormous but finite amount of knowledge. Because of its finiteness, 
the answer whether P is equal to NP is outside of the grasps of our imagination. I am sure some 
advanced will be made, and I am without a doubt that people will not cease to try and solve this 
problem until it is resolved, but currently, with our level or knowledge and technology, the P versus 
NP problem is impossible to properly define or solve without a contradiction somewhere along the 
line. 
 
So whether P is really equal to NP, we do not know. It is impossible to say at this point in time. 

 
∎ 
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